If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=656
We move all terms to the left:
x^2-(656)=0
a = 1; b = 0; c = -656;
Δ = b2-4ac
Δ = 02-4·1·(-656)
Δ = 2624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2624}=\sqrt{64*41}=\sqrt{64}*\sqrt{41}=8\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{41}}{2*1}=\frac{0-8\sqrt{41}}{2} =-\frac{8\sqrt{41}}{2} =-4\sqrt{41} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{41}}{2*1}=\frac{0+8\sqrt{41}}{2} =\frac{8\sqrt{41}}{2} =4\sqrt{41} $
| 4x3=76 | | 0.8x-0.05x=0.3 | | -u+228=113 | | 2(6m+8)=4+6m | | -2f=-3f | | v/8+91=30 | | 1/3x-13=8 | | 2x−45=6x+7(x−8) | | 5x-7=-71+2(×+3) | | 3x(x-1)-(x-3)(3x-2)=26 | | 13+4x-9=7x+7-3x. | | 2x-4+3x+2=13 | | 2h^2=32 | | 7v=2v-20= | | 12.7=x–3.8 | | 3x-5=11+2(×-6) | | -6(3+r)=30 | | 95=224-y | | 16+12=9y+33 | | 6x^2-25x-26=0+ | | Y^2=1-2x/3 | | 9n-6=5n+15 | | 250x+180=1000 | | 2+21/2s+20=48 | | k/4-1=2+k/10 | | 6x^2-25x-26=0 | | K/4-1=2+k/20 | | 3÷x+4=-11 | | s+3.5+20=56 | | 3w^2-2w-66=0 | | 2/7d-1/3=1/5 | | 4(x+5)=3(×-4) |